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Abstract

We present a method for efficient global illumination computa-
tion in dynamic environments by taking advantage of temporal co-
herence of lighting distribution. The method is embedded in the
framework of stochastic photon tracing and density estimation tech-
niques. A locally operating energy-based error metric is used to
prevent photon processing in the temporal domain for the scene re-
gions in which lighting distribution changes rapidly. A perception-
based error metric suitable for animation is used to keep noise in-
herent in stochastic methods below the sensitivity level of the hu-
man observer. As a result a perceptually-consistent quality across
all animation frames is obtained. Furthermore, the computation
cost is reduced compared to the traditional approaches operating
solely in the spatial domain.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Time-varying imagery

Keywords: Animation, Human Factors, Illumination, Monte
Carlo Techniques, Temporal Aliasing

1 Introduction

Global illumination is an important visual cue, which greatly im-
proves the appearance of rendered images. In this work we focus
on high quality computer animations that are becoming more and
more widespread in many applications such as entertainment, ad-
vertisement, education, engineering, architecture, urban planning,
and many others. Obviously, adding global illumination effects to
such animations enhances their realism and makes them more be-
lievable in reconstructing the appearance of the real world.

Although the off-line computation of top quality computer ani-
mations makes it possible to include costly lighting simulation tech-
niques, it almost never happens in industrial practice [1]. The main
problem with existing global illumination solutions is poor scaling
of the computation load with increasing scene complexity, which
is often caused by wasting computational efforts on unimportant
scene details that cannot be perceived in the final animation by
the human observer [23, 11]. Also, existing animation rendering
techniques process every single frame independently, and therefore
cannot account properly for the eye sensitivity variations resulting
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from temporal considerations [18]. While some efficient techniques
of perception-based guidance of the global illumination computa-
tion for static images have been proposed recently [7, 3, 22], rela-
tively little attention has been paid to the temporal aspect of such a
guidance for dynamically changing environments. In particular, in-
direct lighting often changes slowly from frame to frame and many
of those changes might be too subtle to be perceived (changes in di-
rect lighting are usually quite well noticeable due to high-contrast
shadows and highlights accompanying the moving objects). Since
it would be an obvious waste to repeat the computation of indirect
lighting for every frame from scratch, the performance of animation
rendering could be significantly improved by exploiting the tem-
poral coherence of indirect lighting. Ideally, lighting information
acquired for the preceding and following frames should be re-used
as much as possible for reconstructing indirect lighting in a given
frame; however, the quality of the resulting animation as perceived
by the human observer should not be compromised.

Some attempts were made to exploit the coherence in light-
ing distribution by repeating the indirect lighting computation for
a fixed number of frames (so-calledkeyframes) and re-using the
results obtained for the remaining frames (so-calledinbetween
frames). Usually the number of inbetween frames between a pair
of keyframes is the same for the whole animation, and there is no
control of the validity of applying the keyframe lighting to the in-
between frames [31]. Such an approach might result in visually
noticeable errors in the lighting distribution, which is affected by
changes in the environment that occur in the course of the anima-
tion. Obviously, the errors in lighting that are explicitly caused
by the scripted animation of light sources can be compensated
by increasing the number of keyframes for the affected anima-
tion segments. However, the question arises how many additional
keyframes must be placed, so that approximations in the lighting
reconstructed for inbetween frames remain unnoticeable. It is even
more difficult to predict how the moving objects will affect the
lighting distribution based merely on the animation script. Clearly,
even for the simple approach with re-using lighting for inbetween
frames some error metrics are needed to guide the keyframe place-
ments. Ideally, some perception-based animation quality metrics
are required that can directly judge whether the errors introduced
by exploiting the temporal coherence are below the sensitivity level
of the human observer. Also, by performing some limited compu-
tation for all frames (not just keyframes) abrupt changes in lighting
can be identified more easily.

In this paper we introduce a novel framework for efficient global
illumination computation in dynamic environments. We propose a
combination of energy- and perception-based error metrics which
efficiently guide lighting computation. Using these metrics the spa-
tiotemporal coherence in the lighting distribution can be better ex-
ploited and the accuracy of the lighting computation can be relaxed
without degradation of the animation quality as perceived by the
human observer. As a result a perceptually-homogeneous quality
of indirect lighting reconstruction across the spatial and temporal
domains is obtained.

The paper is organized as follows. Section 2 reviews the pre-
vious approaches to global illumination in dynamic environments
and perception-based animation. In Section 3 we introduce our
new framework. The outline of our global illumination solution
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and a description of the extensions needed for handling dynamic
environments are discussed in Section 4. In Section 5 we present
the spatiotemporal processing guided by a hybrid of energy- and
perception-based error metrics. We discuss the obtained results us-
ing our techniques in Section 6. Finally, we conclude the paper and
propose some future directions for this research.

2 Previous Work

In our discussion of previous work we will concentrate on the two
essential issues most relevant to our research. At first, we briefly
overview existing solutions for handling global illumination recon-
struction for dynamic environments. In particular, we focus on the
problem of indirect lighting computation. In the second part we dis-
cuss the perception-based guidance of such a computation, which
mostly remains an unexplored problem.

2.1 Global Illumination Solutions in Dynamic En-
vironments

The problem of global illumination for dynamically changing en-
vironments has attracted significant attention in the research com-
munity, and a number of solutions that focus mostly on interac-
tive applications have been proposed. Two basic strategies have
been explored: brute-force computation that is performed on the
fly for every frame usually with the support of graphics hardware
and knowledge-based computation focused on the scene regions af-
fected by dynamic changes in the environment.

The rapidly improving speed and functionality of graphics hard-
ware makes it possible to render images displaying advanced light-
ing effects (refer to [13] for a complete survey of such techniques).
However, the explicit global illumination computation is usually
not performed, and although the resulting images look believable,
they poorly predict the appearance of the real world. A notable
exception is the instant radiosity technique [16], which can handle
dynamic environments by replacing a number of aged light paths
by new paths in every frame and combining the resulting images
in the accumulation buffer. Since the technique is view-dependent,
the objects newly appearing in the field of view might be under-
sampled before a sufficient number of light paths involving those
objects have been accumulated. It might be difficult to handle ob-
jects outside the field of view but visible in mirrors.

The extension of radiosity techniques to handle dynamic envi-
ronments proved to be quite successful. Early solutions [4, 8, 17]
were embedded into the progressive radiosity framework and relied
on shooting the corrective energy (possibly negative) to the scene
regions affected by the environment changes. Much better perfor-
mance was obtained for more recently introduced techniques that
are based on hierarchical radiosity [6, 24, 5, 21]. A line-space hi-
erarchy proposed by Drettakis and Sillion [6] enables fast identifi-
cation of links affected by a scene modification, and leads to image
updates at interactive rates for moderately complex environments.
However, the memory requirements inherent in this technique are
extremely high because, apart from storing the active links used for
energy gathering, also passive (refined) links and shafts for the en-
tire scene are stored. The problem of storing shafts was recently
reduced by Schoeffel and Pomi [24], who store shafts only locally
for regions affected by geometry changes. Damez and Sillion [5]
explicitly incorporated time in the hierarchical radiosity framework
and showed substantial improvements in the rendering performance
of animated sequences. However, this was achieved at the expense
of a significant increase of memory requirements which become im-
practical for complex scenes. Pueyo et al. [21] proposed a radiosity
algorithm which is focused on exploiting the temporal coherence
of subsequent animation frames for static camera parameters. All
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Figure 1: Indirect lighting changes can be significant in dynamic
environments. Note the color bleeding effect in the room corner
caused by the strongly illuminated torus in a). The effect disappears
as the torus moves away in b).

discussed radiosity techniques only work well when the lighting
changes are well localized in the scene. Otherwise, recomputing
the lighting from scratch is a better choice. Also, the high quality
of the lighting reconstruction is not guaranteed in those mesh-based
object space approaches. In particular, changes to direct lighting
effects such as shadows and highlights resulting from object mo-
tion are usually highly visible because they are important visual
cues (in general specular effects are difficult to model for radiosity
techniques). To avoid similar problems a majority of high quality
rendering solutions computes direct lighting for every frame using
view-dependent techniques such as sophisticated scanline methods
[1], or ray tracing [30, 14]. We follow this strategy in our solution,
thus we are more interested in techniques aiming at the efficient
computation of indirect lighting in dynamic environments.

Changes in indirect lighting are usually slow and smooth. How-
ever, for dynamic environments such changes can occasionally be
significant (refer to Figure 1). Many practical solutions ignore this
possibility and compute the indirect lighting only for a limited num-
ber of frames, while reusing the obtained results for the remaining
frames. This may cause some popping effects when the indirect
lighting that was computed a number of frames backward is up-
dated. To reduce this effect the indirect lighting should be sampled
more densely, e.g., every 10 frames as in [31]. It is also possible that
significant light changes are missed, or that periodic light changes
are not properly captured. Clearly, some robust guidance for the
selection of frames that require recomputation of indirect lighting
is necessary.

A significant step in this direction was done by Nimeroff et al.
[19] who proposed a powerful range-image based framework for
handling indirect lighting in dynamic environments. The indirect
lighting is sparsely sampled in time and then interpolated to re-
construct full global illumination for selected base images. The
time steps for recomputing the indirect lighting are found by recur-
sive subdivision. At each time step the lighting is calculated for
a number of vertices usingwavelet radiosity, then the differences
between the corresponding vertices are computed. If differences
larger than an assumed threshold are found for a certain percentage
of vertices the time sequence is subdivided. The drawback of this
approach is that direct lighting is not considered, which could ef-
fectively wash out even significant differences in indirect lighting
[9]. Also, the tone reproduction [26] is not applied to the result-
ing lighting which is difficult in the view-independent framework
as proposed by Nimeroff et al. [19] because the eye adaptation con-
ditions cannot be established. Both effects can significantly affect
the visibility of changes in indirect lighting and we take them into
account in our technique.

The interpolation of indirect lighting between two time steps is



an important feature of Nimeroff’s framework. The continuity of
changes in the lighting distribution between time steps is modelled
and popping effects resulting from switching between two distinct
lighting distributions as in [31] can be avoided. However, in all
discussed approaches the accuracy of indirect lighting reconstruc-
tion fluctuates between frames, achieving the highest level for the
keyframes, and then gradually decreasing for the remaining frames
usually as a function of their distance to the keyframes along an
animation path. In this research we investigate a novel approach in
which sparse sampling of indirect lighting is performed for every
frame, and the final lighting reconstruction is based on some pro-
cessing of lighting distributions for a number of subsequent frames
placed along the animation path. Thus, at each moment of time a
similar level of accuracy of indirect lighting can be obtained. Such
a framework is less prone to perceivable errors, and the probability
of overlooking some important lighting events between keyframes
is substantially reduced.

Since lighting samples collected in the time domain may become
invalid for dynamic environments, a perception-based guidance of
the lighting reconstruction is needed in order to reduce the proba-
bility of the perceivable errors resulting from such a reconstruction.
In the following section we discuss previous work on perception-
based solutions applied in the context of high quality animation.

2.2 Perception-Guided Animation Rendering

The main goal of perception-guided animation rendering tech-
niques is to save computation without compromising the resulting
animation quality as perceived by the human observer. Recently
some successful examples of perception-based rendering of static
images have been presented [7, 3, 22], however, expanding those
techniques to handle the temporal domain remains mostly an open
problem.

Myszkowski et al. [18] used a hybrid ray tracing and Image-
Based Rendering (IBR) approach to improve the rendering perfor-
mance by deriving as many pixels as possible, using inexpensive
IBR techniques without affecting the walkthrough animation qual-
ity (the technique is not suitable for dynamic environments). A
perception-based spatiotemporal Animation Quality Metric (AQM)
was used to automatically guide such a hybrid rendering. The cen-
tral part of the AQM is a model for the spatiovelocity Contrast
Sensitivity Function (CSF), which specifies the detection thresh-
old for a stimulus as a function of its spatial and temporal frequen-
cies. Also, visual masking is modelled, which affects the detection
threshold of a stimulus as a function of the interfering background
stimulus which is closely coupled in space. The AQM models tem-
poral and spatial mechanisms (channels) which are used to repre-
sent the visual information at various scales and orientations in a
similar way as the primary visual cortex does. In this research
we use the AQM as well but in the completely different context
of guiding the global illumination computation rather than the IBR
processing.

Since gains by adding further extensions to current early vision
models such as the AQM are rather small [20], some attempts of
using higher level perceptual and cognitive elements have been in-
troduced in the context of animation. Yee [31] proposes an inter-
esting application of a visual attention model to improve the effi-
ciency of indirect lighting computations in the RADIANCE system
[30] for dynamic environments. Yee demonstrated that greater er-
rors can be tolerated for less salient image regions in which the
density of indirect lighting samples can be substantially reduced.
However, variability in the selection of the region of interests (ROI)
for different observers, or even for the same observer from session
to session, can lead to some degradation of the animation quality
in regions that were not considered as important attractors of the
visual attention.Yee reports that such degradations of quality could

be perceived when the same animation sequence was viewed more
than once by the same observer. In our research, we are aiming at
applications that require high quality animations which will possi-
bly be viewed many times by a large number of observers. For this
reason, we decided not to include visual attention models into our
framework. Yee also ignored visual masking which plays an impor-
tant role in hiding imperfections of reconstructed lighting [7].

3 Overview

The goal of this work is to improve the performance of global illu-
mination computations for animated sequences of high quality by
exploiting the temporal coherence in indirect lighting distribution
in a better way. The mesh-based view-independent Density Esti-
mation Particle Tracing (DEPT) algorithm [27], which we extend
in this work to handle animated objects, is used as a global illumi-
nation framework, but the proposed solutions could be easily ap-
plied to other stochastic algorithms such as the photon map [14].
Initially, the lighting function is sparsely sampled in space for all
frames (not just for fixed keyframes as in [19, 31]) within a given
animation segment. Then, based on the obtained results, the deci-
sion is made whether the segment can be expanded/contracted in
the temporal domain. Since the validity of samples may depend on
the particular region in the scene for which indirect lighting con-
ditions change more rapidly, different segment lengths are chosen
locally for each mesh element (used to store particle hits), based
on the variations of the lighting function. Energy-based statistical
measures of such local variations are used to calculate the num-
ber of preceding and following frames for which samples can be
safely used for a given region. More samples are generated if the
quality of the frames obtained for a given segment length is not
sufficient. The perception-based Animation Quality Metric (AQM)
[18] is used to choose an average number of photons per frame for
each segment to prevent perceivable degradation of animation qual-
ity. Spatial filtering is performed for those scene regions in which
a sufficient number of samples cannot be collected in the temporal
domain. For the final rendering the indirect lighting is reconstructed
using the techniques just outlined, while specular effects and direct
lighting are computed for every frame separately by ray tracing.

4 Indirect Lighting Solution

As a framework for global illumination computation, we chose the
Density Estimation Photon Tracing (DEPT) algorithm [27]. The
DEPT is similar to other stochastic solutions in which photons are
traced from light sources towards surfaces in the scene, and the
lighting energy carried by every photon is deposited at the hit point
locations on those surfaces [12, 25, 29]. A simple photon bucketing
on a dense triangular mesh is performed, and every photon is dis-
carded immediately after its energy is distributed to the mesh ver-
tices. Efficient object space filtering substantially reduces visible
noise, while the excessive smoothing of the lighting function can
be avoided by adaptively controlling the local filter support which
is based on stochastically-derived estimates of the local illumina-
tion error [27, 29].

An important feature of the DEPT technique is that the bucket-
based lighting reconstruction and filtering are very efficient, and
the quality of the reconstructed lighting is quite good. Thus, the re-
sulting illumination maps can be displayed immediately, and many
variants of lighting reconstruction in the context of temporal photon
processing for animations can be inexpensively analyzed for choos-
ing the best solution. This is in contrast with other photon tracing
techniques which involve costly density estimation techniques such
as the kernel methods [25, 29], or the final gather step [14] in order
to obtain images of good quality.



Another advantage of the DEPT computation is that a reason-
able mesh-based approximation of the direct lighting is available
(although in the final frames the direct lighting is recomputed on a
per pixel basis), which is required to model the local eye adapta-
tion conditions. The eye adaptation characteristics are needed for
proper tone reproduction [26] during the illumination map display,
and for the prediction of the eye sensitivity to the errors in indirect
lighting. The reduction of these errors is the main objective of the
perception-based guidance of temporal photon processing.

The extension of the DEPT algorithm to handle animated se-
quences of dynamically changing environments requires the storage
of photons that are reused in neighbouring frames. The photons are
stored on a per frame basis. For each photon, information on its
spectral energy distribution is stored to account for reflected light
and allow effects such as color bleeding (refer to Figure 1). Also,
the hit point coordinates in the form of two barycentric coordinates
are stored to facilitate distributing the photon energy to the mesh
vertices, and to keep the photon position within the mesh elements
in relative rather than in absolute terms. Finally, the mesh element
identifier is stored, which forms a basis together with the photon
barycentric coordinates for re-using a given photon for neighbour-
ing frames. We assume that the motion of objects between the sub-
sequent frames is small enough that even the photons which are “at-
tached” to moving mesh elements approximate the indirect lighting
within these elements well. In Section 5.1 we present our solutions
that prevent re-using of photons for neighbouring frames when the
variations in indirect lighting are significant enough to be perceived
by the observer.

Since mesh elements are the framework for our temporal pro-
cessing, the photons are sorted according to the elements which
they hit. Apart from storing photon records, an additional table
which summarizes the number of photons per element is also kept
for every frame. Those tables are later used to efficiently derive
some statistics on lighting variations in the temporal domain for a
given element (refer to Section 5.1). With the help of these statistics
we can detect significant changes of lighting. In this case reusing
photons for reconstructing the lighting in adjacent frames might be
restricted. Using the tables for the purpose of such statistics means
that effectively the exact positions of photon hit points within an
element are ignored (only the photon number counts), however, the
processing of complete photon records can be avoided. In the fol-
lowing section we describe those statistics in more detail. We also
explain the spatiotemporal processing of photons for dynamic en-
vironments.

5 Spatiotemporal Photon Processing

In our technique we assume that photons are traced sparsely for all
animation frames and our goal is to minimize the number of those
photons without compromising the animation quality. To achieve
this goal we exploit the temporal coherence of indirect lighting and
for a given frame we also consider photons that were traced for
neighboring frames. Ideally, as many frames should be processed
as it is required to reduce the stochastic noise below the sensitivity
level of the human observer. However, the expansion of the photon
collection in the temporal domain might be limited due to changes
in dynamic environments that affect the lighting distribution. A
contradictory requirement arises between maximizing the number
of collected photons and minimizing the number of neighbouring
frames (the time span) for which these photons were traced. A
trade-off solution to this problem relies on balancing the stochastic
noise (resulting from collecting too few photons) and the errors in
reconstructed illumination (caused by collecting too many invalid
photons in the temporal domain) to make those artifacts as little
objectionable as possible for the human observer. The perception-
based AQM is used to find the minimal number of photons per

frame which is required to make the noise undetectable. An energy-
based stochastic error metric, which is applied to each mesh ele-
ment and to every frame, is used to guide the photon collection in
the temporal domain. We found this mesh-element level of apply-
ing the energy-based metric to be very efficient, and therefore aban-
doned the use of perception-based guidance of photon collection at
this low level which would be far more expensive.

We describe our energy-based error metric which controls the
temporal photon processing and reduces the probability of using in-
valid photons in the scene regions in which lighting changes rapidly
in Section 5.1. In Section 5.2 we discuss our techniques of spa-
tiotemporal photon processing, which guarantee that the quality of
the indirect lighting reconstruction is consistent through the whole
animation.

5.1 Error Metric for Temporal Processing

As we argued in the previous section collecting photons in the tem-
poral domain makes sense only if the lighting distribution does not
change too rapidly for subsequent frames. We attempt to detect
such changes locally on the level of single mesh elements. The
practical question how to distinguish the actual changes in lighting
from the stochastic error arises. This problem is especially diffi-
cult in our technique because we compute a very small number of
photons for every frame, which results in high levels of noise. In
practice, this means that only lighting changes that are significantly
higher than the noise level can be detected, which requires estimat-
ing the noise.

If we assume for a moment that the lighting does not change
between subsequent frames, then hitting mesh elements by photons
can be modelled well by the Poisson distribution [2]. Since the
mesh elements are small the probabilityp of hitting a given mesh
element by a photon is also small, i.e.,p � 1 as required by the
Poisson process. Also, different photons hitting a mesh element
are mutually independent, i.e., the probability of the same photon
hitting a mesh element again as a result of its multiple reflections
is small. The Poisson distribution only has a single parameter, the
mean�, which can be estimated as the mean number of photons
hitting a mesh element. The standard deviation� can simply be
derived as� =

p
�. Thus, the noise level can be estimated as

� � k�, where e.g.,k = 2 (for � = 0 we assign� = 1). Based
on this estimate we assume that if the number of photonsx hitting
a mesh element does not satisfy the condition

�� k� � x � �+ k� (1)

a change of lighting can be expected and the photon collection for
this mesh element is disabled. For a given mesh element the mean�
is estimated for the currently considered frame and the values ofx
are obtained for the corresponding mesh element in the preceding
and following frames. The temporal collection of photons is ini-
tiated from the current frame and proceeds for subsequent frames
as long as Condition (1) is satisfied. The photon processing is per-
formed independently in the directions of the preceding and follow-
ing frames. Thus, the photon collection for a given mesh element
may be asymmetric with respect to the current frame when Condi-
tion (1) is violated earlier in one of those directions than in another
one.

There are many possible sources of error, which may prevent the
application of Condition (1) from working robustly for all mesh el-
ements. First of all the estimate of� might be inexact since we use
a Monte Carlo solution at very early stages of convergence. To re-
duce the influence of outliers on the estimate of� we consider the
mean number of photons hitting a given mesh element for three sub-
sequent frames. We apply this procedure to derivex for the same
reason. More than three subsequent frames might be considered
but then the� estimate might be affected by changes in lighting.
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Figure 2: Organization of an animation segment.

Clearly, the procedure works the better the more photons per frame
are computed.

If the average number of photons per mesh element is small, as-
signingk > 2 might be considered to compensate for inaccuracies
in the� estimates. Also, small lighting changes on the level�k�
are usually less perceptible than the temporal aliasing which be-
comes visible when the temporal photon collection is prematurely
disabled. In practice, we assume the minimal extent of the temporal
processing to be at least 3 frames. Even if the lighting conditions
change drastically for a pair of subsequent frames, the visibility
thresholds are usually elevated due to the temporal masking for up
to 100 milliseconds [10]. Since new lighting details cannot be seen
well for 2–3 animation frames the lighting reconstruction accuracy
can be relaxed for those frames, and tracing additional photons can
be avoided.

In the following section we describe the algorithm of animation
rendering, which extensively uses the procedure of adaptive photon
collection in the temporal domain described in this section.

5.2 Algorithm

The animation sequence is split into animation segments, which are
then processed sequentially one by one. The organization of a sin-
gle segment is depicted in Figure 2. The frameK divides the seg-
ment into two halves of lengthFmax=2 each. The goal of the seg-
ment processing is to reconstruct indirect lighting for allFmax + 1
frames. To enable temporal processing of the whole segment the
photons collected for neighbouring segments for up toFmax frames
precedingK and up toFmax frames followingK are also consid-
ered. For the very first and last animation segments the lack of those
extra frames is compensated by tracing more photons.

The processing of every animation segment consists of five ma-
jor steps:

1. Initialization: determination of the number of initial photons
per frame, and processing of those photons for all frames in
the current segment.

2. Adjustment of the segment length depending on the tempo-
ral variations of indirect lighting which are measured using
energy-based criteria (refer to Section 5.1).

3. Adjustment of the number of photons per frame based on
the AQM response in order to limit the perceivable stochas-
tic noise to an acceptable level.

4. Spatiotemporal reconstruction of indirect lighting for all mesh
elements guided by the same energy-based criteria as in Step
2.

5. Spatial filtering step for those mesh elements that did not meet
the perceptual and energy criteria in the previous two steps.

In practice, Steps 1–3 are performed not only for the current
segment but for the subsequent segment as well, which results in
the processing of all photons that are used for indirect lighting re-
construction in the current segment at Step 4. Obviously, photons
for the preceding segment that has already been processed are also
available for the temporal processing of frames in the current seg-
ment.

In the following sections we describe all steps in detail.

5.2.1 Initialization

In the initialization step we decide how many photonsNframe per
frame have to be shot for a given animation segment. Also, the
initial segment lengthFmax needs to be chosen based on the antici-
pated complexity of the lighting changes during an animation. The
initial settings ofFmax andNframe are adjusted later for every ani-
mation segment using the energy-based and perception-based error
metrics. However, the better the initial guess is, the smaller num-
ber of iterations involving those metrics is needed. In our approach
Fmax is set manually by the user for the first processed segment.
The adjustedFmax for a previous segment is assigned as the initial
length of a subsequent segment. Based onFmax chosen for a given
segment,Nframe is decided automatically as follows.

An initial value forNframe should take into account basic light-
ing characteristics of the considered animation segment. To derive
such an initial guess we applied the energy-based measure of the
error of indirect lighting simulation1 E. We observed that by set-
ting the maximum error valueEmax to lie inside the range of 1–5%
we usually obtained images of good quality. Further computation
basically did not introduce any improvement as perceived by the
human observer [27]. In practice, we assume a less conservative
Emax = 5%. Now, if we would run the DEPT computation un-
til E � Emax we would find the number of photonsNmax that
is required to achieve this accuracy. Since we want to reconstruct
indirect lighting for a given frame using photons computed for up
to Fmax=2 preceding andFmax=2 following frames, we could es-
timateNframe = Nmax=(Fmax + 1). In practice, we do not want
to run the computation for a single frame long enough to reach the
error levelEmax. However, we can directly get a good estimate of
Nframe much faster by using the basic property of stochastic solu-
tion convergence stating that the error is proportional to the inverse
square root of the number of traced photons [15]:

E

Emax

�
r

Nmax

Nframe

(2)

This means thatNframe can be estimated by running the pilot DEPT
computation untilE � Emax

p
Fmax + 1.

Finally, for all frames in the current animation segmentNframe

photons are traced, and their hit point records are sorted for every
mesh element.

5.2.2 Choosing the Animation Segment Length

The main goal of adjusting the maximum segment lengthFmax is
to reduce the animation artifacts caused by collecting photons in
the temporal domain over too many frames, as this may lead to an
invalid lighting reconstruction. For the scene regions in which the
temporal changes of the lighting function are fast, the collection
of photons can be performed only for a small number of subse-
quent frames. Conversely, for the scene regions in which the tem-
poral changes are slow the photons should be collected for as many
frames as possible to reduce the stochastic noise.

1The detailed description of the stochastic method used to estimate the
lighting simulation error in the framework of the DEPT algorithm can be
found in [28].



In Section 5.1 we described our procedure of adaptive pho-
ton collection in the temporal domain. The maximum number of
frames for which photons are collected using this procedure is lim-
ited by the segment lengthFmax. IncreasingFmax incurs additional
costs of processing a larger number of frames, and is justified only
when collecting photons fromFmax frames is possible for a signif-
icant percentagepme of the mesh elements. In practice, the user
sets a certain threshold valuepthr, e.g., 40%, andFmax is increased
until the conditionpme < pthr is met. Such a test is performed only
once per segment, when the lighting is reconstructed for the central
keyframeK. Note that increasingFmax causes movingK apart
Fmax=2 frames from the end of the previously processed segment
(or from the beginning of animation sequence for the very first pro-
cessed segment). TheFmax value obtained forK is then used for
all frames in the current segment.

5.2.3 Choosing the Number of Photons

The main goal of adjusting the number of photons per frameNframe
is to keep the noise below a perceivable level. IncreasingNframe for
each frame in a given segment is an expensive operation and should
be performed if the adjustment ofFmax performed in the previous
step did not provide the required animation quality as perceived by
the human observer.

The AQM is used to measure the errors of the indirect light-
ing reconstruction which enables the perception-guided selection
of Nframe to minimize the computational costs without degrading
the animation quality. The AQM requires two animation framesI1
and I2 as input, and will then predict the perceivable differences
between them. Ideally, a frame resulting from the temporal photon
processing should be compared to some exact reference solution.
Since such a reference solution is not available in practice, we de-
cided to measure the differences in indirect lighting reconstructed
for the central frameK by splitting the photons collected for all
frames in a given segment into two halves (the even and odd pho-
tons). The indirect lighting inI1(K) andI2(K) is reconstructed
using these halved sets of photons. In order to measure the level of
noise in the conditions in which the actual temporal photon process-
ing is performed for all animation frames, the procedure of adaptive
photon collection in the temporal domain is used for theI1(K) and
I2(K) computation as well (refer to Section 5.1).

The approach of halving sets of photons is quite conservative
because according to the Monte Carlo methods theory [15] the
stochastic error of indirect lighting reconstruction in the frame
I(K) that is obtained for 100% of photons is smaller by the factorp
2 with respect toI1(K) andI2(K). The perceivable differences

as predicted by the AQM usually are reduced by an even larger fac-
tor if the number of photons is doubled.

As the result of AQM processing a mapMAQM is generated
which shows the prediction of perceivable differences in indirect
lighting between all corresponding pixels inI1(K) and I2(K).
As a scalar metric of the frame quality the percentagedAQM of
MAQM pixels with differences over one unit Just Noticeable Dif-
ference (JND) is assumed [18]. The user chooses a certain threshold
valuedthr of the AQM predicted differences, and whendAQM >
dthr, Nframe is doubled and the whole procedure is repeated until
dAQM < dthr.

To reduce the costs of Human Visual System (HVS) modelling
the AQM processing is performed only once per segment for the
central frameK. Thus, theNframe value obtained forK is assumed
to be valid for all frames in a given segment. In practice, this trade-
off approach works well because the differences in indirect lighting
are usually small for a given animation segment whose lengthFmax
was adjusted to reduce such differences (refer to Section 5.2.2).

5.2.4 Indirect Lighting Reconstruction

After establishingFmax andNframe further processing of all frames
in a given segment becomes straightforward. At first, the valid pho-
tons are collected for each mesh element, using the procedure of
adaptive photon collection in the temporal domain described in Sec-
tion 5.1. Then the standard procedure for deriving illumination at
mesh vertices is applied (refer to Section 4).

5.2.5 Repairing Noisy Pixels

The procedure described in the previous section may potentially re-
sult in locally noisy images2 for the scene regions (e.g., moving ob-
jects) in which the indirect lighting changes much faster than for the
remaining parts of environment. For such regions collecting pho-
tons in the temporal domain is usually limited to a few subsequent
frames. Obviously, the noise level could be reduced by increas-
ingNframe which is costly. Note that in the procedure of selecting
Nframe using the AQM we allow perceivable differences for up to
dthr pixels (refer to Section 5.2.3). When the perceivable problems
concern only a small fraction of mesh elements, then for efficiency
reasons, increasingNframe for all frames in a given segment should
be avoided.

Our solution relies on using the spatial filtering performed in the
object space selectively for those mesh elements for which the ex-
pansion in the temporal domain was not possible, resulting in a
small number of collected photons. We apply the filtering algorithm
which was originally proposed in [27]. To achieve the required level
of accuracy of reconstructed lighting at a given vertex, photons hit-
ting a regionh centered at this vertex are considered. Stochastic
variance estimates of the local illumination are used to decide upon
the size ofh. This effectively reduces noise, however some bias
is introduced to the reconstructed lighting (refer to [27] for a for-
mal derivation of a mathematically-sound measure of illumination
accuracy and a detailed description of the filtering algorithm).

Using spatial filtering is equivalent to trading in the spatial de-
tails of indirect lighting in order to remove excessive noise. If this
approach is not acceptable, a final gathering step [14] could be per-
formed. However, we did not apply this solution because of its
significant cost. We found that the spatial filtering approach as ap-
plied in the indirect lighting reconstruction produces good results in
terms of the animation quality as perceived by the human observer.

5.3 Accuracy Considerations

The accuracy of the indirect lighting reconstruction using our algo-
rithm described in Section 5.2 is limited by the spatial resolution of
the mesh used for collecting photons. Consequently the solution is
biased. On the other hand the mesh resolution can be set arbitrar-
ily fine and more photons can be traced. For those mesh elements
that still collect too few photons in the temporal domain, the spatial
filtering discussed in Section 5.2.5 can be used to remove visible
noise. Another source of the bias is the temporal blur resulting
from the collection of invalid photons in the temporal domain. The
level of blurring can be controlled in the energy terms and traded
for the stochastic noise by decreasing the value of parameterk in
Condition (1).

The AQM is used to measure the perceivable differences be-
tween two equally biased indirect lighting solutions, which means
that all measured differences between framesI1(K) andI2(K) re-
sult from the stochastic noise (refer to Section 5.2.3). Effectively
the AQM provides a conservative stopping condition for photon
tracing when the noise falls below the sensitivity level of the hu-
man observer. Tracing more photons cannot improve the perceived

2As a matter of fact for a vast majority of tests that we performed, we
were not able to notice such problems.



quality of the indirect lighting reconstruction due to limitations in
the spatial mesh resolution.

6 Results

We present results that we obtained for theROOM scene (about
5,300 mesh elements). Also, we briefly summarize the results ob-
tained for another sceneATRIUM (about 45,000 mesh elements),
which are qualitatively very similar and therefore do not need to be
discussed in full length. Both scenes were designed in such a way
that moving objects significantly affected the lighting distribution.
Also, some scene regions are illuminated exclusively by indirect
lighting which imposes higher requirements on its reconstruction.
We begin with discussing the experimental results for the adaptive
algorithm of temporal photon processing discussed in Section 5.1.
Then we discuss the step by step results obtained for the spatiotem-
poral photon processing discussed in Section 5.2.

The simplest scenario of temporal photon processing is to con-
sider the fixed number of preceding and following frames. How-
ever, this approach may lead to significant errors as illustrated in
Figures 3. Figure 3a shows the correct reference frame obtained
for the converged DEPT solution. In this scene a spot light illu-
minates the bottom of the aircraft, and the highlight on the floor is
caused by the light reflected from the aircraft. Note that as the re-
sult of non-adaptive temporal processing for allFmax = 30 frames
the highlight is significantly washed out (Figure 3b). When ap-
plying our adaptive photon collection technique (Section 5.1) the
highlight shown in Figure 3c is similar to the reference frame in
Figure 3a. Figure 3d shows the AQM produced mapMAQM, in
which red color marks pixels for which visible differences are pre-
dicted. Figures 4a and b summarize the AQM predicted percentage
of pixelsdAQM with perceivable differences derived fromMAQM

for various settings ofNframe andFmax for non-adaptive and adap-
tive photon collection approaches. As can be seen in Figure 4a for
the non-adaptive approach, expandingFmax initially leads to re-
ducingdAQM, but then the collection of invalid photons results in
increasingdAQM for largeFmax. The corresponding characteristics
for the adaptive approach shown in Figure 4b are extremelyfavor-
able because the expansion ofFmax always leads to the reduction
of dAQM, which means that collecting invalid photons is mostly
avoided.

Following the subsequent processing steps described in Sec-
tion 5.2 we obtained the following animation settings for theROOM
scene. As the result of the initialization procedureNframe =
10; 000 andFmax = 15 were chosen. The animation was split into
three segments and the final settings computed for the central seg-
ment framesKi are summarized in Table 1. In segmentK3 Nframe

is smaller andFmax more expanded because strong direct lighting
washes out some imperfections of the indirect lighting reconstruc-
tion. Also, changes of lighting are less dynamic in this animation
segment.

Figure 5 summarizes the results obtained forK2 using the
energy-based procedure of photon validity estimation for subse-
quent frames described in Section 5.2.2. We assumedpthr = 40%.
The maximum segment lengthFmax = 30 was chosen (refer to Ta-
ble 1), in which casepme = 36% andpme = 30% were obtained
for the preceding and following directions, respectively.

Nframe Fmax
K1 40,000 30
K2 40,000 30
K3 10,000 44

Table 1: Final settings for theROOM scene animation.

Figure 6 summarizes the results obtained using the perception-
based procedure of noise level estimation as described in Sec-
tion 5.2.3. It was assumed thatdthr = 3%, which means in prac-
tice that the perceivable differencesdAQM < 1% with respect to
the reference solution are usually obtained. Table 1 summarizes the
number of photonsNframe chosen for every segment based on the
graphs in Figure 6. For such animation settings the spatial filtering
described in Section 5.2.5 was not necessary.

Figure 7a shows an animation frame obtained using the settings
presented in Table 1. Figure 7b depicts the corresponding frame
obtained using the traditional approach without any temporal pho-
ton processing. Strong temporal aliasing was observed when the
animation composed of such quality frames was viewed. We also
tried the traditional approach withNframe = 845; 000 which corre-
sponds to the average number of photons collected in the temporal
domain using our approach. While the static image is of a quality
comparable to the frame in Figure 7a some temporal aliasing can
be seen clearly when the resulting animation is viewed.

The results obtained for theATRIUM scene are very similar
to the ones forROOM. For a majority of segmentsNframe =
20; 000 and Fmax = 44 were chosen using our automatic pro-
cedures described in Section 5.2. In general,Nframe fell into
the range of 10,000–40,000 photons whileFmax lay between 30
and 44 frames. The activation of spatial filtering (Section 5.2.5)
led to some minor improvement of the animation quality. Fig-
ure 8 shows an example of a frame with spatial filtering and the
only differences with respect to the corresponding frame without
filtering can be seen on the stairs which feature small mesh ele-
ments and little visual masking. Refer to our Web sitewww.mpi-
sb.mpg.de/resources/aqm/dynenv/ for the samples of
all animations discussed in this section.

A summary of timings of indirect lighting computation is given
in Table 2. As can be seen, tracing photons and their temporal pro-
cessing is rather inexpensive. The higher cost of temporal process-
ing for theATRIUM scene is due to the larger number of processed
mesh elements. The I/O costs related to disk access are given for
two extreme scenarios denoted in Table 2 asMIN and MAX (pro-
vided in brackets). In the former case photons are accessed from the
disk only once and then cached until all frames using those photons
have been processed. This means that all photons processed for a
given frame must reside in memory, which is a common require-
ment for many photon-based techniques such as the photon map
[14]. This is usually a reasonable assumption for our technique as
well. For example, the maximum memory storage per frame for
the ATRIUM sequence was about 120 MB (one photon hit point re-
quires 20 bytes of storage). In the case denoted by (MAX ) in Table 2
it was assumed that all photons are always loaded from disk for
each frame. Such a situation may arise for complex scenes when a
high accuracy of lighting reconstruction is required, in which case
a large number of photons that are bucketed into a fine mesh must
be considered (refer to Section 5.3). Note that even in such a case
our timings are at least three times better than shooting a similar
number of photons that we collected in the temporal domain for
every frame, which requires 87 and 133 seconds for theROOM and
ATRIUM scenes, respectively. Ray tracing of a single frame requires
9.4 seconds forROOM and 158 seconds forATRIUM.

Scene Photon AQM Temp. I/O Total
tracing proc. MIN (MAX ) MIN

ROOM 2.57 0.27 0.32 0.72 (21.56) 3.88
ATRIUM 2.95 0.21 1.85 0.88 (26.93) 5.89

Table 2: Timings of the indirect lighting computation for a single
frame obtained as the average cost per frame for the whole anima-
tion. All timings are given in seconds and were measured on a 800
MHz Pentium III processor.



a) b)

c) d)

Figure 3: Example frame from theROOM sequence a) reference solution for 2,000,000 photons without temporal processing, b) non-adaptive
(note the washed-out highlight under the plane) and c) adaptive photon collection in the temporal domain forFmax = 30 frames and
Nframe = 40; 000 photons, and d) the map of AQM predicted perceivable differences (marked in red) between a) and c).
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Figure 4: The AQM predicted percentage of pixelsdAQM with perceivable differences for a) non-adaptive and b) adaptive temporal photon
collection approaches for increasingFmax and various settings ofNframe (as specified in the legend).
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Figure 6: The AQM predicted percentage of pixelsdAQM with per-
ceivable differences as a function ofNframe for the central segment
framesKi.

Another important issue is the cost of perception-based error
metrics. The choice of characteristics of the HVS used to guide
lighting computations should be weighted by the possible perfor-
mance gains obtained by their consideration. For example, tim-
ings reported by Yee for rendering a single frame using the RADI-
ANCE system including indirect lighting computation amounted to
3–6 hours, which means that the overhead of the HVS modelling is
marginal. Our indirect lighting solution requires only single min-
utes for similar scenes so that the overhead becomes significant. In
practice, this means that the HVS characteristics that are too costly
to model have to be ignored. In order to reduce the cost of the
AQM, we ignore the orientation channels processing in the visual
masking, which to some extent can be justified by cross-masking
between various orientations as discussed in [20]. Also, we scale
down images which are input to the AQM to256 � 256 pixels. At
the same time we proportionally reduce the distance of the observer
to the screen (which is an input parameter of the AQM) to preserve
the same spatial frequencies as in the original animation frames.
We compute the pixel flow, which is needed to model the spatiove-
locity Contrast Sensitivity Function (an important component of the
AQM), by compensating the camera motion using 3D warping of
the frames neighboring to a given keyframe as in [18]. We assume
that the motion of animated objects is fully compensated by the
smooth pursuit eye motion (thus, the computation of pixel flow is
not required, and the significant cost of such a computation [31] can
be avoided), which leads to the high sensitivity of the eye for such
objects. This assumption is justified by the fact that moving objects

are one of the most important attractors of the visual attention [20],
which means that efficiency of the eye tracking for such objects is
very high. All those simplifications result in the AQM processing
time of about 4 seconds for a pair of compared frames.

7 Conclusions

We proposed a novel global illumination technique for dynamic en-
vironments which is suitable for high-quality animation rendering.
A combination of efficient energy- and perception-based error met-
rics was used to guide the computation as a function of local spa-
tiotemporal variations of the lighting distribution. As a result the
animation quality as perceived by a human observer is consistent
across all frames both in spatial and temporal dimensions. Also,
the efficiency of computation is improved and the temporal alias-
ing is reduced with respect to traditional approaches which ignore
temporal processing.

As future work we want to investigate our technique in the con-
text of MPEG coding. The accuracy of the lighting reconstruc-
tion can be adjusted in order to obtain a degradation of the anima-
tion quality that is perceived as being as homogeneous as possible
for an assumed animation compression level. Also, by removing
non-visible lighting details from animations the compression per-
formance can be improved.
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